
Adaptive Linear Contextual Bandits for Online
Recommendations

Anonymous Author(s)

ABSTRACT
Contextual bandit algorithms have been successfully applied to
online recommender systems by dynamically optimizing a trade-
o� between exploration and exploitation. However, most existing
approaches recommend items to a user based on the user’s all pre-
vious preferences, which neglects speci�c characteristics of various
items in online recommendations, especially for those with a vari-
ety of preferences. To tackle this problem, in this paper, we propose
an adaptive user preference �ltering mechanism for online rec-
ommendations. Speci�cally, we develop an adaptive linear upper
con�dence bound algorithm, i.e., AdaLinUCB, to serve users with
contextual bandits. We propose a preference �ltering matrix that
varies with user preferences. By �ltering user preferences according
to various items, we recommend the item with highest score to the
user adaptively. We propose a coordinate descent method to opti-
mize the bandit parameters with an online sliding window model.
Extensive experiments conducted on two benchmark datasets verify
the signi�cant improvement of AdaLinUCB against state-of-the-art
baselines. In addition, we �nd such preference �ltering matrix has
explainable clustering characteristics, which helps to visualize and
interpret recommendation results.

CCS CONCEPTS
• Information systems → Recommender systems;

KEYWORDS
Contextual bandits, online recommendation, �ltering user prefer-
ences

ACM Reference format:
Anonymous Author(s). 2018. Adaptive Linear Contextual Bandits for Online
Recommendations. In Proceedings of The Web Conference 2018, Lyon, France,
April 23-27, 2018 (WWW 2018), 10 pages.
DOI: xx.xxx/xxxx

1 INTRODUCTION
During online recommendations, the need to probe the user’s new
interest and the need to satisfy the user’s interest results in an
explore-exploit dilemma [2, 3, 20]. Intuitively, such dilemma can
be formulated as a contextual bandit problem, which consists of a
series of trials in a sequential recommendation process [31]. Here a
trial indicates to a task pipeline for a contextual bandit, including
recommending an item to a user, receiving a reward from the user,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW 2018, Lyon, France
© 2018 Copyright held by the owner/author(s). xxx-xxxx-xx-xxx/xx/xx. . . $xx.xx
DOI: xx.xxx/xxxx

Figure 1: An example of our online recommendation in
a music portal. Recommender system recommends a song
with highest score from a given candidate list. The red and
blue colors refer to the user preferences on jazz and rock re-
spectively. Other than existing bandits models, we propose
a preference �lteringmatrix to �lter user preference accord-
ing to various items.

and updating its recommendation strategy, successively. Eventu-
ally, the target of such contextual bandits recommendation is to
maximize the total received reward of all trials. Recent work on
contextual bandits show impressive performance in online recom-
mendations, especially when the recommendation space is large
whereas rewards are interrelated [2, 8, 19, 20].

The whole user preferences may have various characteristics re-
ferring to di�erent items. Scoring an item using the corresponding
characteristics in the whole user preferences has been proved ef-
fective in collaborative �ltering [14, 36]. However, most of existing
contextual bandit algorithms still make a prediction by scoring each
item based on the whole user preferences, and neglect to adaptively
utilizing characteristics. This inevitably results in a systematic bias,
i.e., the whole user preferences have a negative in�uence when
scoring an item.

Filtering user preferences not only improves the accuracy of the
results but also improves the ranking orders of the recommendation
sequence. To this end, it is necessary to propose a contextual bandit
algorithm that could adaptively �lter user preferences instead of
using the whole user preferences for online recommendations. To
tackle this problem, we consider adding a preference �ltering matrix
into contextual bandits and employ user preferences after �ltering
to score items, which can provide a more precise estimation. Shown
in Figure 1, Given a music portal, we assume that a user likes rock
and jazz style music. The red and blue colors refer to the user
preferences on jazz and rock respectively. There are various styles
of songs in the candidate item set. We add a preference �ltering
matrix into the existing model, and it gets six new user preferences
according to di�erent songs. Then, recommender system generates

WWW 2018, April 23-27, 2018, Lyon, France Anon.

predictions by using preferences on rock to score the rocky-style
song.

In this paper, we propose an adaptive linear upper con�dence
bound algorithm (AdaLinUCB) which uses the preference �ltering
matrix to �lter user preferences. AdaLinUCB �rst �lters user prefer-
ences according to di�erent items. Then, for each item, AdaLinUCB
generates the predicted score using the new user preferences. After
that, AdaLinUCB selects the highest scoring item to recommend to
the user, and then the user gives a feedback. Finally, AdaLinUCB
uses user feedback and historical recommendation records to update
user preferences and preference �ltering matrix. It is challenging
to learn the user preference �ltering matrix, since the parameter
update method of the existing contextual bandit algorithms is not
suitable for this task [20, 24, 37]. Therefore, we propose a coordi-
nate descent method to learn the user preference �ltering matrix.
Besides, we present an Online Sliding Window Model to dynami-
cally manage user historical activities. It improves the accuracy of
online recommendations without sacri�cing e�ciency.

The main contributions of this work are summarized as follows.
1. We present an AdaLinUCB algorithm to adaptively take user

preferences about speci�c items into consideration for online
recommendations.

2. We propose a coordinate descent method to optimize the
bandit parameters with an online sliding window model to
dynamically manage user historical activities.

3. We conduct extensive experiments on two benchmark datasets
to evaluate the e�ectiveness of our AdaLinUCB algorithm
compared with several state-of-the-art contextual bandit algo-
rithms. We analyze the learned preference �ltering matrices
and �nd that they have explainable clustering characteristics
corresponding to realistic situations.

We introduce related work in §2; in §3 we formulate our research
problem. We describe our approach in §4; §5 details our experi-
mental setup and presents the results; §6 analyzes the results; §7
concludes the paper.

2 RELATEDWORK
To the best of our knowledge, no previous work has studied the
problem of �ltering user preference for contextual bandits. But there
are several lines of related work: 1) contextual bandit algorithms;
2) online collaborative �ltering with bandits; and 3) probability
matching with bandits.

Contextual bandit algorithm is an important branch of Multi-
armed bandit algorithms. Contextual bandit algorithm assumes the
distributions of rewards pertaining to each item are connected by a
set of parameters [6, 8, 19, 20, 34]. The setting for contextual bandit
with linear rewards was �rst introduced in [2], where the expecta-
tion of reward for each item is assumed to be a linear function of its
context vector. In the follow-up researches, Li et al. [20] proposed
LinUCB to use ridge regression to compute the expected reward of
each item and the corresponding con�dence interval. Then, there
are many variants of these models. Cesa-Bianchi et al. [8] proposed
GOB.Lin that requires connected users in a network to have similar
bandit parameters via a graph Laplacian based model regulariza-
tion. Nguyen and Lauw [24] proposed DynUCB by introducing a

dynamic clustering approach to keep a bandit customized to indi-
vidual user and yet allow users to bene�t from the collective set
of learning items in their cluster. Wu et al. [37] proposed CoLin
by explicitly modeling the underlying dependency among users
via a weighted adjacency graph. This establishes a bridge to share
information among di�erent users.

There are also some recent developments that focus on online
collaborative �ltering and probability matching with bandits [7, 16–
18, 23, 26, 27]. Zhao et al. [40] studied interactive collaborative
�ltering via probabilistic matrix factorization. Chapelle and Li [9]
presented some empirical results and demonstrated the e�ciency
of Thompson sampling. May et al. [22] extended the Thompson
Sampling by introducing a new algorithm, Optimistic Bayesian
Sampling (OBS), in which the probability of recommending an item
increases with the uncertainty in the estimate of the reward. Kawale
et al. [16] developed a Thompson sampling scheme for online
matrix-factorization. Nakamura [23] developed a UCB-like strategy
to perform online collaborative �ltering.

Contextual bandit algorithms provide solutions to the explore/-
exploit dilemma [1, 4, 10, 12, 28], which exists in many real-world
applications, such as display advertisements [15, 21, 29, 32] and
recommender systems [5, 20, 25, 39]. It has achieved promising
performance in various application scenarios [11, 20, 38]. In this
paper, we propose an AdaLinUCB algorithm to adaptively use user
preferences for online recommendations. It not only improves the
accuracy of the result but also improves the ranking orders of the
recommendation sequence.

3 PRELIMINARIES
3.1 Problem Formulation

Table 1: Important Notations

Notation Description

A the candidate item set
a item in candidate item set
xt,a the feature vector of item a in the t-th trial
θu the preference parameter of user u
θ̂u the estimation of user preference parameter θu
rt,a the reward of recommending the item a in the t-th

trial
r̂t,a the expected reward of recommending the item a

in the t-th trial
(Du ,bu) Du is a matrix, whose rows correspond to item fea-

tures that are observed previously, bu is the corre-
sponding feedback vector

In online recommendations, recommender system needs to con-
tinuously recommend items for users. The problem setting consists
of a series of trials and could be seen as a sequential recommenda-
tion problem. For the t-th trial, given a candidate item set At , the
recommender system �rst selects an item a ∈ At to recommend to
user u. Then, it receives a reward rt,a . After that, the recommender
system uses the reward rt,a to update recommendation strategy for
better recommendation in next trials. The goal of the algorithm is to
get the maximization of the total received rewards, R =

∑T
t=1 rt,a .

Adaptive Linear Contextual Bandits for Online Recommendations WWW 2018, April 23-27, 2018, Lyon, France

The expected reward r̂t,a is determined by the item feature xt,a
and user preference parameter θu .

r̂t,a = f (xt,a ,θu), (1)

where f () is a prede�ned prediction function. The important nota-
tions are shown in Table 1.

3.2 Standard Contextual Bandits
In a standard contextual bandit problem, the reward of each item is
assumed to be governed by bandit parameters (i.e., user preferences
which are recorded by the algorithm) and context vectors of items [2,
20]. At each trial t , we assume the expected reward of an item a

is linear in its feature vector xt,a (xt,a ∈ Rd) with the preference
parameter θu from current user u,

r̂t,a = x>t,aθu . (2)

Let Du be a designed matrix of dimension m × d at trial t , whose
rows correspond tom items that are observed previously by user
u, and bu ∈ Rm be the corresponding feedback vector, where each
dimension represents the user reward. Applying ridge regression to
the training data (Du ,bu) gets an estimate of the preferences [20],

θ̂u = (D>uDu + Id×d)
−1D>u bu , (3)

where Id×d is the d × d identity matrix. When components in bu
are independent conditioned on corresponding rows in Du , Walsh
et al. [33] show that with probability at least 1 − δ ,

|x>t,aθ̂u − rt,a | 6 β
√
x>t,a (D

>
uDu + Id×d)−1xt,a , (4)

where β = 1 +
√
ln(2/δ)/2 is a constant, for any δ > 0. In other

words, Eq.4 gives a reasonably tight Upper Con�dence Bound
(UCB) [2, 3] for the expected reward of item a. Then, an UCB-type
item-selection strategy can be derived: at each trial t , choose

a∗
def
= argmax

a∈At

(x>t,aθ̂u + β
√
x>t,aA

−1
u xt,a), (5)

where At is current candidate item set, Au
def
= D>uDu + Id×d .

Algorithm 1 gives a detailed description of the linear contextual
bandit algorithm and Figure 2 is the general framework of making
recommendations to a single user in discrete iterations. As shown
in Figure 2, the recommendation framework can be divided into
three parts from left to right: item, system, and user. The item part
mainly includes candidate item sets. The system part maintains
user preference parameters and makes predictions about item re-
wards. The user part receives items which were recommended by
the system part and gives a real-value feedback to system part.
Speci�cally, for each trial in Figure 2, the item part �rst delivers
item features to the system part. Then the recommendation system
predicts rewards of items in candidate item set (in steps 8 to 10),
using item features and user preference parameters. After that, rec-
ommending the item with the highest reward to user and the user
will give a real evaluation of the item. Finally, the system receives
user feedback and updates user preference parameters (in steps 13).

Due to the user preferences are extracted from di�erent types of
items, the problem in above standard contextual bandit algorithm
is that it uses the whole user preferences for the prediction. As
shown in Eq.5, when calculating the predicted reward, the algorithm

Algorithm 1 Linear Contextual Bandit Algorithm

1: Inputs: the parameter of exploration: β ∈ R+
2: for t = 1, 2, 3, . . . ,T do
3: Receive user u
4: if user u is new then
5: initialize Au ← Id×d , bu ← 0d×1,θu ← Id×1
6: end if
7: Extract features of all items a ∈ At : xt,a ∈ Rd
8: for all a ∈ At do
9: r̂t,a = x>t,aθu + β

√
x>t,aA

−1
u xt,a

10: end for
11: Select a∗ = argmaxa∈At

(r̂t,a)
12: Observe the real-valued rt,a∗ from user u
13: Update user preference parameters:

Au ← Au + xt,a∗x
>
t,a∗

bu ← bu + rt,a∗xt,a∗

θu ← A−1u bu
14: end for

 …

 …

 …

…

θ

θ

θ

itemitem feature predict reward user feedback

extract preference parameter vectorθ

trial 1

trial 2

trial T

candidate item set user preferences recommended item

Figure 2: The framework of contextual bandit algorithms

uses the mixed user preferences which consist of di�erent types of
characteristics. This probably leads to suboptimal recommendations.
In order to minimize this inherent noise e�ects, we propose an
AdaLinUCB algorithm.

4 ADAPTIVE LINEAR CONTEXTUAL
BANDITS

In this section, we detail our proposed approach for online recom-
mendations. We �rst present the adaptive linear upper con�dence
bound algorithm (AdaLinUCB) in §4.1. We then propose an Online
Sliding Window Model to learn preference �ltering matrix in §4.2.

4.1 AdaLinUCB
We present a new linear contextual bandit algorithm by introducing
the mechanism of adaptively �ltering user preferences according
to speci�c items. Given Algorithm 1, we have user preference pa-
rameters, i.e., θu , Au , and bu , which are shown as follows:

θu = A−1u bu , (6)

WWW 2018, April 23-27, 2018, Lyon, France Anon.

Au ← Au + xt,a∗x
>
t,a∗ , (7)

bu ← bu + rt,a∗xt,a∗ (8)
where xt,a refers to the item feature for item a in trial t , while θu
is the preference parameters for user u. We use a �ltering matrix to
�lter user preferences before making predictions, which is shown
in Eq 9-11.

r̂t,a = x>t,aθu , (9)

θu = (Wu,xt,a � A
−1
u)bu , (10)

Wu,xt,a = д(xt,a)Wu (11)

where r̂t,a is the expected reward.Wu,xt,a ∈ R
d×d is the current

preference �ltering matrix and Wu ∈ R
d×d is the common pref-

erence �ltering matrix which has been learned. Function д() (see
Eq. 16) is a �ltering function, which is used to build the current
preference �ltering matrix according to item feature xt,a . Speci�-
cally, adaptively �ltering user preferences is a general solution for
contextual bandits: when user preference �ltering matrix does not
a�ect recommendations, i.e., all elements in matrixWu,xt,a are 1,
our AdaLinUCB algorithm degenerates to those conventional linear
contextual bandit algorithms.

Due to the coupling betweenWu,xt,a and θu in the reward gen-
eration, we appeal to a coordinate descent algorithm to learn the
preference �ltering parameter Wu,xt,a and the user preference
parameter θu . We use the ridge regression to estimate the user pref-
erence parameter θu , and use the logistic regression to learn the
preference �ltering parameterWu,xt,a . Speci�cally, the objective
function of ridge regression can be written as follows [20, 35],

min
θu

T∑
t=1

(x>t,aθu − rt,a)
2 + γ | |θu | |

2
2 , (12)

where γ is the trade-o� parameter for L2 regularization. The objec-
tive function of logistic regression can be written as follows,

min
Wu,xt,a

−
1
T

T∑
i=1

[rt,aloд(x>t,aθu) + (1− rt,a)loд(1−x
>
t,aθu)]. (13)

However, maximizing the expected reward alone may result in
a long term regret from not discovering a better item through
exploration. Therefore, we also consider the Upper Con�dence
Bound (UCB) [2, 3, 35]:

|r̂t,a − rt,a | 6 β
√
x>t,a (D

>
uDu + Id×d)−1 �Wu,xt,axt,a , (14)

where Du is the training input, Id×d is the d × d identity matrix.
β is a parameter for the importance of exploration, for any δ > 0,
β = 1 +

√
ln(2/δ)/2. To this end, we design the following item

recommendation strategy by selecting the item maximizing the
UCB:

a∗
def
= argmax

a∈At

(x>t,aθu + β
√
x>t,aA

−1
u �Wu,xt,axt,a), (15)

where At is current candidate item set, Au
def
= D>uDu + Id×d .

We refer to this linear contextual bandit algorithm as AdaLin-
UCB and illustrate the detailed procedure in Algorithm 2. We also
describe the framework of AdaLinUCB in Figure 3. As shown in
Figure 3, it extends the standard contextual bandit framework as

θ

θ

θ

 …

 …

 …

preference filtering matrix !Wu"

candidate item set

itemitem feature predict reward user feedback

update preference filtering matrix

extract preference parameter vectorθ

…

trial 1

trial 2

trial T

user preferences

recommended records

Figure 3: Framework of adaptive linear upper con�dence
bound algorithm

Algorithm 2 AdaLinUCB

1: Inputs: the parameter of exploration: β ∈ R+
2: for t = 1, 2, 3, . . . ,T do
3: Receive user u
4: if user u is new then
5: initializeWu ∈ R

d×d (all elements are 1)
6: initialize Au ← Id×d , bu ← 0d×1,θu ← Id×1
7: end if
8: Extract features of all items a ∈ At : xt,a ∈ Rd
9: for all a ∈ At do

10: Wu,xt,a ← д(xt,a)Wu
11: θu ← (Wu,xt,a � A

−1
u)bu

12: r̂t,a = x>t,aθu + β
√
x>t,aA

−1
u �Wu,xt,axt,a

13: end for
14: Select a∗ = argmaxa∈At

(r̂t,a)
15: Observe the real-valued rt,a∗ from user u
16: Update user preference parameters:

Au ← Au + xt,a∗x
>
t,a∗

bu ← bu + rt,a∗xt,a∗

17: Update preference �ltering matrix:
Wu ←Wu − λu

∂r̂t,a
∂Wu

18: end for

shown in Figure 2 by introducing a preference �ltering matrix.
Speci�cally, for each user u, we initialize a preference �ltering ma-
trixWu , all values inWu are 1. Simultaneously, we initialize the
user preference parameters to record the characteristics of user
interested items (in step 4 to 6 of Algorithm 2). For each trial in
Figure 3, we �rst adaptively �lter user preferences and calculate
the predicted reward for each item in the candidate item set (in
step 9 to 12 of Algorithm 2). Then, we select the item with highest
predicted reward to recommend. After that, the user gives a real-
valued feedback about the item (in step 14 and 15 of Algorithm
2). Finally, we use a coordinate descent method to update the user
preference parameters and the preference �ltering matrix (in step
16 and 17 of Algorithm 2). We develop an Online Sliding Window

Adaptive Linear Contextual Bandits for Online Recommendations WWW 2018, April 23-27, 2018, Lyon, France

Model to dynamically manage user historical activities and use
Stochastic Gradient Descent (SGD) to learn the user preference
�ltering matrix.

4.2 Online Sliding Window Model

… ……

train

recommended sequence recommended itemssliding window

item features preference filtering matrix

user preferenceuser feedback

update preference filtering matrix

Figure 4: Online Sliding Window Model

So far we have introduced AdaLinUCB algorithm which could
adaptively �lter user preferences for online recommendations. The
question then arises: how could we model the �ltering function
д() and what kind of way to learn the preference �ltering matrix
without sacri�cing e�ciency?

We propose an Online Sliding Window Model to solve this prob-
lem as shown in Figure 4. A straightforward solution to model
the �ltering function is to apply a nonlinear kernel to model д().
Speci�cally, the model we adopt could be formulated as:

д(xt,a) = σ (xt,ax
>
t,a). (16)

We use the sigmoid function σ (x) = 1/(1 + e−x) to model д().
As shown in Figure 4, Online Sliding Window Model manages
the recommended sequence and trains the preference �ltering ma-
trix in an online manner. The recommended items in the recom-
mended sequence consist of all items in a trial, i.e., including all
items which were recommended and not recommended. The size
of sliding window could be adjusted according to di�erent users.
Instead of updating the matrix in every iteration with little observed
data, coordinate descent can be performed in a mini-batch mode
with adaptive window size. This will not a�ect the e�ciency of
online recommendations. Therefore, the Online Sliding Window
Model provides an e�ective method of learning the �ltering matrix
with a low computational complexity.

5 EXPERIMENTS
In this section, we describe our experiments in details. §5.1 lists our
research questions. §5.2 describes our experimental settings. §5.3 re-
ports the performance comparison results and answers the research
question RQ1. §5.4 reports the impact of Online Sliding Window

Model and answers the research question RQ2. §5.5 reports the re-
sult of computation complexity and answers the research question
RQ3.

5.1 Research questions
RQ1 Does the AdaLinUCB method outperforms state-of-the-art

baseline methods? (See §5.3)

RQ2 What is the impact of Online Sliding Window Model for
AdaLinUCB method? (See §5.4)

RQ3 Will �ltering user preferences a�ect the time e�ciency of
online recommendations? (See §5.5)

5.2 Experimental Setup
Datasets. We carry out experiments on two publicly available
datasets1: LastFM and Delicious Bookmarks. The characteristics of
the two datasets are summarized in Table 2.

Table 2: Statistics of the evaluation datasets

Dataset Users# Tags# Items# (User, Item) pairs#

LastFM 1892 9643 17632 71064

Delicious 1867 11619 69226 104220

1. LastFM. This dataset is extracted from the music streaming
service Last.fm2 and has been widely used to evaluate contextual
bandit algorithms. We use the information of “listened artists” of
each user to create rewards for bandit algorithms: if a user listened
to an artist at least once, the reward is 1, otherwise 0.

2. Delicious. This dataset is extracted from the social bookmark
sharing service website Delicious3. We generate the rewards using
the information about the bookmarked URLs for each user: the
reward is 1 if the user bookmarked a particular URL, otherwise 0.

Note that the Delicious dataset is much sparser than the LastFM
dataset in terms of observations per item: they contain about the
same number of users, but the number of items in Delicious is almost
four times larger than that in LastFM. Therefore, these two datasets
provide us complementary evaluations of online recommendation
in di�erent scenarios. Following the same settings in [8, 37], we
pre-processed these two datasets. First, we used all tags associated
with a single item to create its TF-IDF feature vector. Then we
used PCA to reduce the dimensionality of the features. In both
datasets, we took the �rst 25 principle components to construct
the context vectors, i.e., the observed feature dimension d = 25.
We then generated the candidate item set as follows: we �xed the
size of candidate item set to 25; for a particular user u, we picked
one item from those nonzero reward items according to the whole
observations in the dataset, and randomly picked the other 24 from
those zero-reward items. As a result, there is only one relevant item
in each item set.

Evaluation Protocols. Following existing studies [24, 37], we use
the Cumulative Reward as one evaluation metric. In addition, we
1https://grouplens.org/datasets/hetrec-2011/
2https://www.last.fm
3https://del.icio.us/

WWW 2018, April 23-27, 2018, Lyon, France Anon.

0 20000 40000 60000 80000 100000
Iteration

0
50
00

10
00
0
15
00
0
20
00
0
25
00
0
30
00
0

C
u
m
u
la
ti
v
e
 R

e
w

a
rd

s

LastFM
AdaLinUCB
LinUCB
CoLin
MLinUCB
UniformLinUCB
HybridLinUCB
RandomReward

(a) LastFM–Cumulative Rewards

0 500 1000 1500 2000
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
R
R

LastFM

AdaLinUCB
LinUCB
CoLin
MLinUCB
UniformLinUCB
HybridLinUCB

(b) LastFM–MRR

0 20000 40000 60000 80000 100000
Iteration

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

C
u
m
u
la
ti
v
e
 R
e
w
a
rd

s

Delicious
AdaLinUCB
LinUCB
CoLin
MLinUCB
UniformLinUCB
HybridLinUCB
RandomReward

(c) Delicious–Cumulative Rewards

0 500 1000 1500 2000
Time

0.00

0.05

0.10

0.15

0.20

0.25

M
R
R

Delicious

AdaLinUCB
LinUCB
CoLin
MLinUCB
UniformLinUCB
HybridLinUCB

(d) Delicious–MRR

Figure 5: Performance of Cumulative Reward and MRR on the two datasets. The online sliding window size is set to 15.

1 2 3 4 5 6 7 8 9 10
K

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

80
00

0

C
u
m

u
la

ti
v
e
 R

e
w
a
rd

s@
K

LastFM

AdaLinUCB
LinUCB
CoLin
MLinUCB
UniformLinUCB
HybridLinUCB

(a) LastFM–Cumulative Rewards@K

1 2 3 4 5 6 7 8 9 10
K

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
R
R
@

K

LastFM

AdaLinUCB
LinUCB
CoLin
MLinUCB
UniformLinUCB
HybridLinUCB

(b) LastFM–MRR@K

1 2 3 4 5 6 7 8 9 10
K

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

C
u
m
u
la
ti
v
e
 R
e
w
a
rd
s@

K

Delicious

AdaLinUCB
LinUCB
CoLin
MLinUCB
UniformLinUCB
HybridLinUCB

(c) Delicious–Cumulative Rewards@K

1 2 3 4 5 6 7 8 9 10
K

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
R
R
@
K

Delicious

AdaLinUCB
LinUCB
CoLin
MLinUCB
UniformLinUCB
HybridLinUCB

(d) Delicious–MRR@K

Figure 6: Evaluation of Top-K item recommendation where K ranges from 1 to 10 on the two datasets.

record the ranking of test items in the recommended processes. The
performance of the ranked lists is judged by Mean Reciprocal Rank
(MRR). Then, we truncate the ranked list at 10 for both metrics.
The Cumulative Reward intuitively measures whether the test item
is presented in the top-K list, and the MRR measures the ranking
orders of the correct items in the top-K list.

Baselines. We perform empirical evaluations of our proposed
AdaLinUCB algorithm against several related baseline algorithms.
- CoLin [37]. It operates at the the adjacency graph among users

and shares the context and feedbacks between neighboring ban-
dits during online update.

- LinUCB [20]. It selects an item based on an Upper Con�dence
Bound of the estimated reward with given context vectors.

- HybridLinUCB [20]. It extends LinUCB via a hybrid feature
representation of both items and users.

- MLinUCB [37]. It executes LinUCB to M user clusters.
- UniformLinUCB [37]. It executes LinUCB to all of the users.

Parameter Settings. We implement our AdaLinUCB algorithm
based on Python and Theano. The source code of our model is
available online4. In our experiments, our datasets are consistent
with [37], so we follow their basic parameter settings. We �x the
trade-o� parameter γ for L2 regularization to 0.3, and set the learn-
ing rate λ to 0.03. We set the sliding window size from 1 to 15, then
we record the results of cumulative rewards and item ranks. For
M-LinUCB algorithm, the user cluster parameter M is set to 50. For
CoLin algorithm, in order to make the graph denser and make the

4URL suppressed. It will be shared upon publication of the paper

algorithm computational feasible, we perform graph-cut to cluster
users into 50 clusters (following the same setting in [8, 37]).

5.3 Performance Comparison (RQ1)
Figure 5 shows the performance of Cumulative Reward and MRR
with respect to the total dataset. From the results shown in Fig-
ure 5 (a) and (c), we could see that AdaLinUCB achieves the best
performance on both datasets, outperforming the state-of-the-art
methods by a large margin, the improvement over LinUCB is 14.47%
and 14.92% on LastFM and Delicious respectively. It’s worth nothing
that these two datasets are structurally di�erent, as shown in Table
2. Delicious dataset is much sparser than LastFM dataset. Besides,
the popularity of items on these two datasets di�ers signi�cantly
as shown in [37]: on LastFM dataset, there are a lot more popular
artists whom everybody listens to than the popular websites which
everyone bookmarks on Delicious dataset. Thus, the improvement
on both datasets shows a strong adaptability of our algorithm. In
Figure 5 (b) and (d), we show the results of MRR on both datasets.
We record the ranking value of the recommended item in each iter-
ation and use MRR to evaluate the ranking list. To make the �gure
more clearly, we calculate MRR in every 50 iterations. From Figure
5 (b) and (d) we can see that, AdaLinUCB demonstrates signi�cant
improvements over other baselines in terms of MRR. It outperforms
LinUCB on LastFM and Delicious datasets with about 5.20% and
1.27% relative improvement respectively.

Figure 6 shows the performance of Top-K recommended lists
where the ranking position K ranges from 1 to 10. As shown in
Figure 6 (a) and (b), AdaLinUCB shows a persistent improvement on

Adaptive Linear Contextual Bandits for Online Recommendations WWW 2018, April 23-27, 2018, Lyon, France

Table 3: Evaluation of Top-K item recommendation where K
ranges from 1 to 5 on the two datasets. No-Pre stands for the
result without Pre-training, Pre stands for the result with
Pre-training and Result (%) stands for the improvement ra-
tio of Pre-training (learning rate = 0.03, training round = 5)

Cumulative Reward MRR
Top-K No-Pre Pre Result No-Pre Pre Result

LastFM
1 9702 10111 4.21 0.323 0.337 4.33
2 13274 14508 9.29 0.382 0.410 7.32
3 15482 17163 10.85 0.407 0.439 7.86
4 17172 19011 10.70 0.421 0.455 8.07
5 18520 20454 10.44 0.430 0.464 7.90

Delicious
1 2224 2606 17.17 0.074 0.086 16.21
2 3628 4157 14.58 0.097 0.112 15.46
3 4816 5417 12.47 0.110 0.126 14.54
4 6048 6640 9.78 0.121 0.136 12.39
5 7276 7847 7.84 0.129 0.144 11.62

LastFM dataset. However, as shown in Figure 6 (c) and (d), the im-
provement of AdaLinUCB on Delicious dataset is reduced compared
with the results on LastFM dataset. Considering the sparsity of De-
licious dataset, it is reasonable. Note that the trends of AdaLinUCB
and LinUCB are similar on both datasets. The results of cumulative
rewards and MRR keep increasing as the K ranges from 1 to 10. It
means that AdaLinUCB not only improves the accuracy of the result
but also could improve the ranking orders of the recommendation
sequence.

5.3.1 Utility of Pre-training.
It is realizable to access the historical recommended records

in most practical applications. To demonstrate the utility of pre-
training for AdaLinUCB, we compare the performance of two
versions of AdaLinUCB, with and without pre-training. For both
datasets, we use 60000 records to do pre-training, with 30000 records
to do test. We set learning rate to 0.03 and optimize it with Stochas-
tic Gradient Descent (SGD). As shown in Table 3, No-Pre stands
for the result without Pre-training, Pre stands for the result with
Pre-training and Result (%) stands for the improvement ratio of
Pre-training. We could clearly notice that AdaLinUCB with pre-
training achieves better performance in all cases. The improvement
of AdaLinUCB with pre-training is signi�cant for both two datasets
in terms of Cumulative Reward and MRR. This result justi�es the
usefulness of pre-training method for initializing AdaLinUCB.

5.4 Online Sliding Window (RQ2)
We use the coordinate descent method to optimize the ridge re-
gression loss and logistic regression loss alternatively. We optimize
the ridge regression loss following the existing contextual bandit
algorithms [20]. In order to optimize the logistic regression loss,
we propose an Online Sliding Window Model to dynamically man-
age user historical activities and learn the user preference �ltering
matrix as shown in Figure 4. Speci�cally, instead of updating the

preference �ltering matrix in every iteration, we can keep accu-
mulating the recommended records and learning user preference
�ltering matrix with a reduced frequency. This would greatly re-
duce the computation complexity of our algorithm in large-scale
deployment.

As shown in Table 4, with the increase of window size, the im-
provement ratio of Cumulative Reward rises and eventually stabi-
lizes at around 12%. Note that when the sliding window size is set to
1, the improvement is negative on Delicious dataset. We designed
validation experiments to �nd the reason. The results showed that
we needed more training data, e.g., the sliding window size becomes
larger, the result gets better as shown in Table 4. This observation
veri�es the di�erences of the two datasets, which the Delicious
dataset is much sparser than LastFM dataset. This also shows that
AdaLinUCB needs more observations to learn the preference �lter-
ing matrix. To illustrate the impact of di�erent sliding window sizes
for AdaLinUCB, we carried out experiments with di�erent sliding
window size. We report the performance of AdaLinUCB algorithm
w.r.t di�erent sliding window size in Figure 7. We could see that as
the size of the sliding window increases, the results under di�erent
evaluation criteria steadily increase and gradually stabilized.

Table 4: Cumulative Reward improvement performance of
AdaLinUCB. Result (%) stands for the improvement ratio.

LastFM Delicious
Window Size Result Window Size Result

1 4.53 1 -1.99
2 7.11 2 1.71
3 8.47 3 4.05
4 9.64 4 6.23
5 10.37 5 7.89
6 11.15 6 9.67
7 11.56 7 10.52
8 12.02 8 11.27
9 12.63 9 12.23
10 12.91 10 12.85

5.5 The Analysis of Running Time(RQ3)
There is little work on comparing computation complexity of dif-
ferent contextual bandit algorithms. Due to most of the contextual
bandit algorithms are used to do online recommendations, it is
meaningful to study the computation complexity. As shown in Al-
gorithm 1 (see §3.2) and 2 (see §4), the contextual bandit algorithm’s
complexity is mainly concentrated in two stage, item selection and
parameter updating. We conducted experiments to compare their
runtime of item selection and parameter updating. Experiments
were run on a computer with 2 core, 2.6 GHz and 8 GB RAM. In
order to eliminate the in�uence of machine computing capability,
we normalized the time consumption by the result of LinUCB.

In the stage of item selection, as shown in Table 5, the time
consumption of MLinUCB and UniformLinUCB are similar with
LinUCB, as we mentioned in the Baselines (see §5.2) that MLin-
UCB and UniformLinUCB are the variants of LinUCB. The time
consumption of AdaLinUCB is 1.69 times as long as LinUCB, the

WWW 2018, April 23-27, 2018, Lyon, France Anon.

2 4 6 8 10 12 14
Window Size

25
00

030
00

035
00

040
00

045
00

050
00

055
00

060
00

065
00

0

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

s

LastFM

AdaLinUCB Top-5
AdaLinUCB Top-3
AdaLinUCB Top-1

(a) LastFM–Cumulative Rewards

2 4 6 8 10 12 14
Window Size

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

M
R
R

LastFM

AdaLinUCB Top-5
AdaLinUCB Top-3
AdaLinUCB Top-1

(b) LastFM–MRR

2 4 6 8 10 12 14
Window Size

50
00

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

s

Delicious

AdaLinUCB Top-5
AdaLinUCB Top-3
AdaLinUCB Top-1

(c) Delicious–Cumulative Rewards

2 4 6 8 10 12 14
Window Size

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

M
R
R

Delicious

AdaLinUCB Top-5
AdaLinUCB Top-3
AdaLinUCB Top-1

(d) Delicious–MRR

Figure 7: Performance of Cumulative Rewards and MRR on the two datasets. The window size ranges from 1 to 15.

Table 5: Time consumption(ms) of item selection

Method Item Selection Normalized Time

LinUCB 0.402 1
MLinUCB 0.41 1.02

UniformLinUCB 0.48 1.19
AdaLinUCB 0.682 1.69

CoLin 58.476 145.46
HybridLinUCB 148.748 370.01

Table 6: Time consumption(ms) of parameter updating

Method Parameter Updating Normalized Time

LinUCB 0.15 1
MLinUCB 0.186 1.24

UniformLinUCB 0.198 1.32
AdaLinUCB 43.684 291.22

HybridLinUCB 141.434 942.893
CoLin 1247.5 8316.66

increase comes mainly from the user preference �ltering processes.
Compared with CoLin and HybridLinUCB, this time consumption
is negligible. From Table 5 we could see that the time consumption
of CoLin and HybridLinUCB are 145 and 370 times as long as Lin-
UCB, respectively. These two methods depend on the clustering
relationship between users or the graph connection of di�erent
users which need more time to do calculation than AdaLinUCB
algorithm.

In the stage of parameter updating, we report the result which the
sliding window size is set to 10 as shown in Table 6. Compared with
the LinUCB method, the time complexity of AdaLinUCB is high,
although reaching 43ms, but it is acceptable for most recommender
systems. The time consumption of CoLin is 8316 times as long as
LinUCB when the user cluster parameter M is set to 50. And with
the increase of M, the time consumption is exponential growth.
Besides, we also investigate the in�uence of sliding window size for
AdaLinUCB. Figure 8 shows the time consumption of AdaLinUCB
varies with di�erent sliding window sizes. As the sliding window
size becomes larger, the time consumption increases linearly. We
could conclude from the results that its computational complexity
is linear with respect to the number of sliding window sizes for
AdaLinUCB.

2 4 6 8 10 12 14
Window Size

0

10

20

30

40

50

60

T
im

e

Figure 8: Time consumption (ms) of AdaLinUCB with di�er-
ent sliding window size

6 ANALYSIS
Having answered our main research questions in the previous sec-
tion, we now analyze our experimental results of AdaLinUCB algo-
rithm. We analyze the clustering relation of user preference �ltering
matrices. Then, we explore the relation of structure characteristics
between di�erent preference �ltering matrices. We visualize the
result and �nd that they have explainable clustering characteristics
corresponding to realistic situations.

6.1 Clustering relation of user preference
�ltering matrices

The main idea of AdaLinUCB algorithm is adaptively �ltering user
preferences according speci�c items. As far as we know, similar
users hold similar interests in recommender systems. This means
the user preference parameters, which are learned by the exist-
ing contextual bandit algorithm, are similar in the same dataset.
Therefore, we can infer that the preference �ltering matrices which
are learned by Online Sliding Window Model also hold similar
clustering characteristics.

First, we executed AdaLinUCB with Online Sliding Window
Model on both datasets. In AdaLinUCB algorithm, each user holds
a �ltering matrix which is 25 × 25 dimensions. After continuous
learning, we recorded the learning results of the preference �lter-
ing matrices. Then we truncated each row of the matrix to get a
one-dimensional vector. Finally, we used t-Distributed Stochastic
Neighbor Embedding5 (t-SNE) [13, 30] to reduce the dimensionality
of the vectors and visualized the result, as shown in Figure 9 (a) and
5https://lvdmaaten.github.io/tsne/

Adaptive Linear Contextual Bandits for Online Recommendations WWW 2018, April 23-27, 2018, Lyon, France

(a) LastFM (b) Delicious (c) Item popularity of the two datasets
Figure 9: Clustering relation of user preference �ltering matrices by t-SNE, LastFM result contains 1892 individual user and
Delicious result contains 1867 individual user. Figure (c) is item-based analysis on datasets.

0 5 10 15 20 25
0

5

10

15

20

25
UserID=308

0.88

0.96

1.04

1.12

1.20

1.28

1.36

1.44

(a) UserID = 308

0 5 10 15 20 25
0

5

10

15

20

25
UserID=574

0.88

0.96

1.04

1.12

1.20

1.28

1.36

1.44

(b) UserID = 574

0 5 10 15 20 25
0

5

10

15

20

25
UserID=831

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

(c) UserID = 831

0 5 10 15 20 25
0

5

10

15

20

25
UserID=1226

0.75

1.00

1.25

1.50

1.75

2.00

2.25

(d) UserID = 1226
Figure 10: Visualization of user preference �ltering matrix

(b). For LastFM and Delicious datasets, we could see from Figure
9 (c), there are a lot more popular artists whom everybody listens
to on LastFM dataset than the popular websites which everyone
bookmarks on Delicious dataset. Due to LastFM dataset is much
denser than the Delicious dataset, it is easier to dig out the potential
relationship between users. As we can see from Figure 9 (a), the user
presents a strong scattered aggregation relationship. Each cluster
represents a group of users with the same interest. For Delicious
dataset, as shown in Figure 9 (b), most of the users are gathered
in a relatively large range in the middle. This shows that most
users’ interests are more similar in Delicious dataset than LastFM.
Considering that websites is less popular than music artists which
contains a variety of styles and each style has a large number of
loyal fans, this result is reasonable.

6.2 Structure characteristics of preference
�ltering matrices

We further explore the relation of structure characteristics between
di�erent users’ preference �ltering matrices. It is worth nothing
that the user preference �ltering matrices in the same cluster is
structurally similar. In order to show this result more clearly, we
draw the preference �ltering matrix by heat map, as shown in Figure
10. In Figure 10 (a) and (b), these two users whose ID are 308 and 574,
all from cluster 1 in Figure 9 (a). In both �gures, values in diagonal
and lower left corner are both relatively large and it means that
the structure of this two users is relatively similar. Moreover, users
308 and 574 are friends in LastFM dataset. In Figure 10 (c) and (d),
these two user whose ID are 831 and 1226 from cluster 2 in Figure 9

(a) hold the similar characteristics. We analyze the user preference
�ltering matrices in the same cluster and �nd that users in the same
cluster are probably friend or can be connected by their common
friend. These results illustrate the correctness and e�ectiveness of
the AdaLinUCB algorithm from another perspective.

7 CONCLUSION
In this work, we present an adaptive linear upper con�dence bound
algorithm, AdaLinUCB for online recommendations. AdaLinUCB
takes advantage of preference �ltering matrix to adaptively utilize
user preferences during recommendations. We conducted exten-
sive experiments on LastFM and Delicious datasets. AdaLinUCB
signi�cantly outperforms state-of-the-art methods and achieves
15% improvement over benchmarks in terms of Cumulative Re-
ward metric. It improves the accuracy of online recommendations
without sacri�cing e�ciency. Besides, based on our experimental
results and subsequent analyses, we found that the clustering char-
acteristics of learned preference �ltering matrices consist with real
scenarios which means AdaLinUCB could not only improve the
recommendation performance but also help to understand how the
recommendation results are generated.

A limitation in our work is that the dimension of the preference
�ltering matrix depends on the item feature vectors. As to future
work, exploring more principled optimization procedures for learn-
ing AdaLinUCB, instead of gradient decent with a sliding window,
should give new insights for contextual bandits algorithms. Also,
reformulation of AdaLinUCB into a non-linear form may enhance
the prediction performance of online recommendations.

WWW 2018, April 23-27, 2018, Lyon, France Anon.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next gen-

eration of recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge and Data Engineering 17, 6 (2005),
734–749.

[2] Peter Auer. 2002. Using con�dence bounds for exploitation-exploration trade-o�s.
Journal of Machine Learning Research 3 (Nov 2002), 397–422.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine Learning 47, 2-3 (May 2002), 235–256.

[4] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 1995.
Gambling in a rigged casino: The adversarial multi-armed bandit problem. In
Proceedings of the 36th Annual Symposiumon Foundations of Computer Science.
322–331.

[5] Djallel Boune�ouf, Amel Bouzeghoub, and Alda Lopes Gançarski. 2012. A
contextual-bandit algorithm for mobile context-aware recommender system. In
International Conference on Neural Information Processing. 324–331.

[6] Swapna Buccapatnam, Atilla Eryilmaz, and Ness B Shro�. 2013. Multi-armed
bandits in the presence of side observations in social networks. In 52nd IEEE
Conference on Decision and Control. 7309–7314.

[7] Swapna Buccapatnam, Atilla Eryilmaz, and Ness B Shro�. 2014. Stochastic bandits
with side observations on networks. The 2014 ACM International Conference on
Measurement and Modeling of Computer Systems 42, 1 (2014), 289–300.

[8] Nicolò Cesa-Bianchi, Claudio Gentile, and Giovanni Zappella. 2013. A Gang of
Bandits. In Advances in Neural Information Processing Systems. 737–745.

[9] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson
sampling. In Advances in Neural Information Processing Systems. 2249–2257.

[10] Wei Chu, Lihong Li, Lev Reyzin, and Robert E Schapire. 2011. Contextual bandits
with linear payo� functions. In Proceedings of the 14th International Conference
on Arti�cial Intelligence and Statistics, Vol. 15. 208–214.

[11] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. 2010.
Parametric bandits: The generalized linear case. InAdvances in Neural Information
Processing Systems. 586–594.

[12] John C Gittins. 1979. Bandit processes and dynamic allocation indices. Journal
of the Royal Statistical Society. Series B (Methodological) (1979), 148–177.

[13] G. E. Hinton. 2008. Visualizing High-Dimensional Data Using t-SNE. Vigiliae
Christianae 9, 2 (2008), 2579–2605.

[14] S Kabbur and G Karypis. 2014. NLMF: NonLinear Matrix Factorization Methods
for Top-N Recommender Systems. In 2014 IEEE International Conference on Data
Mining Workshop. 167–174.

[15] Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. 2008. E�cient bandit
algorithms for online multiclass prediction. In Proceedings of the 25th International
Conference on Machine Learning. 440–447.

[16] Jaya Kawale, Hung H Bui, Branislav Kveton, Long Tran-Thanh, and Sanjay
Chawla. 2015. E�cient thompson sampling for online matrix-factorization
recommendation. In Advances in Neural Information Processing Systems. 1297–
1305.

[17] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative �ltering model. In Proceedings of the 14th International Conference
on Knowledge Discovery and Data Mining. 426–434.

[18] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009).

[19] John Langford and Tong Zhang. 2008. The epoch-greedy algorithm for multi-
armed bandits with side information. InAdvances in Neural Information Processing
Systems. 817–824.

[20] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In Proceedings of
the 19th International Conference on World Wide Web. 661–670.

[21] Wei Li, Xuerui Wang, Ruofei Zhang, Ying Cui, Jianchang Mao, and Rong Jin.
2010. Exploitation and exploration in a performance based contextual advertising

system. In Proceedings of the 16th ACM International Conference on Knowledge
Discovery and Data Mining. 27–36.

[22] Benedict C May, Nathan Korda, Anthony Lee, and David S Leslie. 2012. Optimistic
bayesian sampling in contextual-bandit problems. Journal of Machine Learning
Research 13, Jun (2012), 2069–2106.

[23] Atsuyoshi Nakamura. 2015. A ucb-like strategy of collaborative �ltering. In
Asian Conference on Machine Learning. 315–329.

[24] Trong T Nguyen and Hady W Lauw. 2014. Dynamic clustering of contextual
multi-armed bandits. In Proceedings of the 23rd ACM International Conference on
Information and Knowledge Management. 1959–1962.

[25] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning di-
verse rankings with multi-armed bandits. In Proceedings of the 25th International
Conference on Machine Learning. 784–791.

[26] Ste�en Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-
Thieme. 2011. Fast context-aware recommendations with factorization machines.
In Proceedings of the 34th International Conference on Research and Development
in Information Retrieval. 635–644.

[27] Aleksandrs Slivkins. 2014. Contextual bandits with similarity information. Jour-
nal of Machine Learning Research 15, 1 (2014), 2533–2568.

[28] Liang Tang, Yexi Jiang, Lei Li, Chunqiu Zeng, and Tao Li. 2015. Personalized
recommendation via parameter-free contextual bandits. In Proceedings of the
38th ACM International Conference on Research and Development in Information
Retrieval. 323–332.

[29] Liang Tang, Romer Rosales, Ajit Singh, and Deepak Agarwal. 2013. Automatic ad
format selection via contextual bandits. In Proceedings of the 22nd International
Conference on Information & Knowledge Management. 1587–1594.

[30] Laurens van der Maaten and Geo�rey Hinton. 2012. Visualizing non-metric
similarities in multiple maps. Machine Learning 87, 1 (2012), 33–55.

[31] Joannes Vermorel and Mehryar Mohri. 2005. Multi-armed bandit algorithms and
empirical evaluation. In European Conference on Machine Learning. 437–448.

[32] Andrew J Vickers, Cathee Till, Catherine M Tangen, Hans Lilja, and Ian M
Thompson. 2011. An empirical evaluation of guidelines on prostate-speci�c
antigen velocity in prostate cancer detection. Journal of the National Cancer
Institute 103, 6 (2011), 462.

[33] Thomas J Walsh, István Szita, Carlos Diuk, and Michael L Littman. 2009. Ex-
ploring compact reinforcement-learning representations with linear regression.
In Proceedings of the 25th Conference on Uncertainty in Arti�cial Intelligence.
591–598.

[34] Chih-Chun Wang, Sanjeev R Kulkarni, and H Vincent Poor. 2005. Bandit problems
with side observations. IEEE Trans. Automat. Control 50, 3 (2005), 338–355.

[35] Huazheng Wang, Qingyun Wu, and Hongning Wang. 2016. Learning hidden
features for contextual bandits. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management. 1633–1642.

[36] Jason Weston, Ron J. Weiss, and Hector Yee. 2013. Nonlinear latent factorization
by embedding multiple user interests. In Proceedings of the 7th ACM Conference
on Recommender Systems. 65–68.

[37] Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. 2016. Con-
textual Bandits in a Collaborative Environment. In Proceedings of the 39th ACM
International Conference on Research and Development in Information Retrieval.
529–538.

[38] Yisong Yue and Carlos Guestrin. 2011. Linear submodular bandits and their
application to diversi�ed retrieval. In Advances in Neural Information Processing
Systems. 2483–2491.

[39] Yisong Yue and Thorsten Joachims. 2009. Interactively optimizing information
retrieval systems as a dueling bandits problem. In Proceedings of the 26th Annual
International Conference on Machine Learning. 1201–1208.

[40] Xiaoxue Zhao, Weinan Zhang, and Jun Wang. 2013. Interactive collaborative
�ltering. In Proceedings of the 22nd ACM International Conference on Information
& Knowledge Management. 1411–1420.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Formulation
	3.2 Standard Contextual Bandits

	4 Adaptive Linear Contextual Bandits
	4.1 AdaLinUCB
	4.2 Online Sliding Window Model

	5 Experiments
	5.1 Research questions
	5.2 Experimental Setup
	5.3 Performance Comparison (RQ1)
	5.4 Online Sliding Window (RQ2)
	5.5 The Analysis of Running Time(RQ3)

	6 Analysis
	6.1 Clustering relation of user preference filtering matrices
	6.2 Structure characteristics of preference filtering matrices

	7 Conclusion
	References

